A Theory of Locally Convex Hopf Algevbras Part II. More Duality Results and Examples

Hua Wang

Institute for Advanced Study in Mathematics
Harbin Institute of Technology

April 21, 2025 Quantum Group Seminar

Compactly Generated Spaces

- **Convention**: we only work with Hausdorff topological spaces unless stated otherwise.
- **Notation**: let X be a topological space, $\Re(X)$ denotes the collection of all compact subspaces of X, directed by inclusion.
- A topological space X is compactly generated (CG), or X is a k-space, if it satisfies the any of the following equivalent conditions:
 - **1** $C \subseteq X$ is closed iff $C \cap K$ is closed in K for every $K \in \Re(X)$;
 - ② for any topological space Y and a map $f: X \to Y$, we have f is continuous iff $f \circ t$ is continuous for any continuous map $t: K \to X$ from a compact K.
- For any space X, condition 1 defines a finer topology on X, denoted by k(X), called the k-ification. of X.
- k: HausTop \rightarrow HausCG defines an idempotent functor.

Examples of Compactly Generated Spaces

The following spaces are all compactly generated:

- all first countable spaces; in particular, all metrizable spaces; in particular again, all Polish spaces (which is one of the speaker's original motivation);
- all locally compact spaces;
- all (Hausdorff) inductive limits of compactly generated spaces; in particular, all CW-complexes, e.g. $\mathbb{R}^{(\infty)} = \underline{\lim} \mathbb{R}^n$.

Remark

Steenrod introduced compactly generated spaces into **algebraic topology**, and they gradually become a standard general assumption in modern treatment of algebraic topology. From this point of view, this is a rather mild assumption.

Topological Groups with Compactly Generated Topology I. Preparation

- *C*(*K*) has AP if *K* is compact;
- AP is stable under forming reduced projective limit;
- $C(K) \overline{\otimes}_{\varepsilon} C(L) = C(K \times L)$ for compact K and L.
- If X is a k-space, then equipped with the **topology of compact convergence**, we have $C(X) = \varprojlim_{K \in \Re(X)} C(K)$, where the connecting maps are given by restriction.
- C(X) is an F-space if X is a k-space that is σ -compact.
- $\overline{\otimes}_{\varepsilon}$ commutes with reduced projective limits of LCS.
- If both *X* and *Y* are *k*-spaces, and $X \times_k Y = k(X \times Y)$, then

$$C(X)\overline{\otimes}_{\varepsilon}C(Y) = \varprojlim_{(K,L)\in\Re(X)\times\Re(Y)} C(K)\overline{\otimes}_{\varepsilon}C(L)$$

$$= \varprojlim_{(K,L)\in\Re(X)\times\Re(Y)} C(K\times L) = \varprojlim_{M\in\Re(X\times_kY)} C(M) = C(X\times_kY).$$

Topological Groups with Compactly Generated Topology II. The Main Result

Theorem (W, 24)

Let G be a topological group with compactly generated topology. Then the group operations of G induces an ε -Hopf algebra structure on C(G). If G is σ -compact, then C(G) is (ε, ι) -polar reflexive.

Sketch of the proof.

Taking the k-fication, the group multiplication $\mu: G \times G \to G$ becomes a continuous map $\mu: G \times_k G \to G$, thus induces a well-defined $\Delta: C(G) \to C(G \times_k G) = C(G) \overline{\otimes}_{\varepsilon} C(G)$. The other structure maps are also induced from the group operations on G and is much easier, so C(G) becomes an ε -Hopf algebra. If G is σ -compact, note that C(G) has (AP), then the theorem on polar reflexivity applies.

The Topological Spectrum and Group-like Elements

Notation: $\chi(H)$ the space of all **continuous** characters of the locally convex algebra H, and $\chi_c(H)$ means $\chi(H)$ equipped with the topology of compact convergence, i.e. as a subspace of H'_c ; $\chi^{\text{inv}}(H)$ the involutive continuous characters if H is involutive, and $\chi_c^{\text{inv}}(H)$ the corresponding topological space.

An abstract theorem (W, 24)

The following holds:

- If H is an ε -Hopf algebra of class (\mathcal{F}) , then $\chi_c(H)$ is a topological group under convolution. If H is furthermore involutive, $\chi_c^{\text{inv}}(H)$ is a closed subgroup of $\chi_c(H)$.
- If H is a π -Hopf algebra, then as a subspace of H, the set of group-like elements Grp(H) is a topological group with multiplication and topology inherited from H.

A Generalized Gelfand Duality-I. Preparation

Let *X* be a *k*-space, $A \subseteq C(X)$ a subalgebra, assumed to be self-adjoint if the scalar field is \mathbb{C} .

- We say A is **full**, if $f \in A$ and f invertible in C(X) implies $f^{-1} \in A$.
- Notation: $A_{[0,1]} := \{ f \in A \mid 0 \le f \le 1 \}.$
- We say $A_{[0,1]} \subseteq C(X)$ separates closed and compact sets, if for any closed $C \subseteq X$ and $K \in \Re(X)$ with $C \cap K = \emptyset$, there exists $f \in A_{[0,1]}$, such that $f(C) = \{0\}$ and $f(K) = \{1\}$.
- Equip A with a new locally convex topology τ , we say (A, τ) is **compactly localized**, if for any continuous seminorm q on (A, τ) , there exists $K \in \Re(X)$, such that for all $f \in A$, we have q(f) = 0 whenever $f|_{K} = 0$.
- **Example**: M a smooth manifold, $A = C^{\infty}(M)$ with τ being the topology of compact convergence on all derivatives, then A is full, $A_{[0,1]}$ separates closed and compact sets, and (A, τ) is compactly localized.

A Generalized Gelfand Duality-II. The result

Theorem (W, 24)

Assume X is a k-space, use the above notation and equip A with a locally convex topology τ such that $(A, \tau) \hookrightarrow C(X)$ is continuous. If A is full and $A_{[0,1]}$ separates closed and compact sets, then the map $X \to \chi_c(A), x \mapsto \delta_x$ is a homeomorphism. If (A, τ) is furthermore compactly localized, then this map is a homeomorphism.

- When X is compact, and τ is the topology of uniform convergence, we recover the classical Gelfand duality theorem for unital commutative C^* -algebra.
- O. Aristov has pointed out to the speaker that the case $(A, \tau) = C(X)$ is covered in (N. C. Phillips, 1988).
- As an example, one may recover M as a topological space by using $C^{\infty}(M)$ for a paracompact smooth manifold M.

Applications to Topological Groups

Theorem (W, 24)

Suppose either of the following hold:

- G is a Lie group, and \mathcal{H}_G the ε -Hopf algebra $C^{\infty}(G)$;
- G is a topological group with compactly generated topology, \mathcal{H}_G the ε -Hopf algebra C(G).

Then, the map $\delta: G \to \chi_c(\mathcal{H}_G)$ is an isomorphism of topological groups. The same holds in the complex case, where we consider \mathcal{H}_G as an ε -Hopf-* algebra and replace $\chi_c(\mathcal{H}_G)$ by $\chi_c^{\mathrm{inv}}(\mathcal{H}_G)$.

- There is no restriction on the "size" of *G* in the above.
- In general, it is still unknown whether $\chi_c(H)$ is always a topological group.
- This means that our notion is indeed quite reasonable!

The Eymard-Stinespring-Tatsumma Duality

The **Eymard-Stinespring-Tatsumma duality theorem** for locally compact groups also has a counterpart in this setting.

Theorem (W, 24)

If $\mathcal{H}_{\widehat{G}}$ is the π -Hopf algebra given by any of the following:

- the strong dual of the ε -Hopf algebra $\mathcal{H}_G = C^{\infty}(G)$ for a second countable Lie group G;
- the polar dual of the ε -Hopf algebra $\mathcal{H}_G = C(G)$ for a topological group with compactly generated topology that is σ -compact.

Then the map $G \to \text{Grp}(\mathcal{H}_{\widehat{G}})$, $g \mapsto \delta_g$ is an isomorphism of topological groups.

The Pontryagin Duality

- Let \mathbb{K} be the scalar field, which is \mathbb{R} or \mathbb{C} .
- A group-like element a in a locally convex Hopf algebra H is called **involutive**, if $Sa = a^*$.

Theorem (W, 24)

Let G be a locally compact group and C(G) the associated ε -Hopf algebra.

- **●** An element $f \in C(G)$ is group-like if and only if $f : G \to \mathbb{K}$ is a continuous (one-dimensional) representation of G.
- ② In the complex case and consider C(G) as an ε -Hopf-* algebra. An element $f \in C(G)$ is an involutive group-like elements if and only if $f: G \to \mathbb{C}$ is a unitary representation. Moreover, if G is abelian, then $\operatorname{Grp}^{\operatorname{inv}}(C(G))$, when equipped with the subspace topology induced from C(G), is exactly the Pontryagin dual \widehat{G} of G.

Projective limits of locally convex spaces

- Let $(E_i, p_i)_{i \in I}$ be a projective system of LCS.
- Let $E = \lim_{i \to \infty} E_i$ be the algebraic projective limit, and $p_i : E \to E_i$.
- There exists a unique coarsest locally convex topology on E making each p_i continuous, equipped with this topology, E is called the **projective limit** of $(E_i, p_i)_{i \in I}$.
- If each E_i is Hausdorff, then so is E.
- If each E_i is complete, then so is E.
- If $p_i(E)$ is dense in E_i for each i, then we say the projective limit is **reduced**.
- $\overline{\otimes}_{\pi}$ and $\overline{\otimes}_{\varepsilon}$ commutes with *reduced* projective limits.

Inductive limits of locally convex spaces

- Let $(E_i)_{i \in I}$ be an inductive system of locally convex spaces.
- Let $E = \varinjlim E_i$ be the algebraic inductive limit, and $u_i : E_i \to E$ canonical.
- There exists a unique finest locally convex topology on E making each u_i continuous, and equipped with this topology E is a LCS, called the **inductive limit** of $(E_i)_i$.
- In general, E is *neither* complete *nor* Hausdorff even if all E_i 's are.
- If $I = \mathbb{N}$, and the transition maps $E_n \to E_{n+1}$ are isomorphism onto its image, then the inductive limit E is called **sequential** and strict.
- Sequential strict inductive limit, by contrast, preserves Hausdorffness as well as completeness.
- \otimes_{ι} commutes with all inductive limits.

Projective and Inductive Limits

- One can form the **projective limit** of **arbitrary (reduced)** projective system of π -Hopf algebras.
- One can also form **inductive limit** of a **strict sequential** inductive system of *ι*-Hopf algebras.

Theorem (W, 24)

Let $(H_n, u_n)_{n\geq 1}$ of a strict inductive system of ι -Hopf(-*) algebras of class (\mathcal{FN}) , and H its strict inductive limit. Then

- for each n, the transpose $p_n: (H_{n+1})'_b \to (H_n)'_b$ of u_n is a morphism of ε -Hopf(-*) algebras and is surjective as a morphism in \widehat{LCS} , giving rise to a reduced projective system $((H_n)'_b, p_n)$ of ε -Hopf algebras;
- the ι -Hopf(-*) algebra H is (ι, ε) -reflexive, and its strong dual is canonically isomorphic to the projective limit $\lim_{n \to \infty} (H_n)'_b$.

Some Classical Examples of Inductive Limits

- Consider a strictly increasing sequence of second countable compact Lie groups $(G_n)_{n\geq 1}$ with G_n a closed subgroup of G_{n+1} , and $u_n: G_n \hookrightarrow G_{n+1}$ the embedding, $p_n: C^\infty(G_{n+1}) \to C^\infty(G_n)$ the restriction. Then $(C^\infty(G_n), p_n)$ is a reduced projective system of ε -Hopf algebras.
- Let $H_{\infty} = \varprojlim (C^{\infty}(G_n), p_n)$. Then $\chi_c(H_{\infty})$ should be the formal strict inductive limit of (G_n) .
- $\chi_c(H_\infty)$ is a topological group, and each G_n embeds canonically into $\chi_c(H_\infty)$ as closed subgroups, with (G_n) strictly increases to $\chi_c(H_\infty)$ as sets. In particular, $\chi_c(H_\infty)$ is not locally compact (it fails Baire's category theorem).
- Moreover, H_{∞} is (π, ι) -reflexive.
- In the above, one may take $G_n = S_n$, O_n or U_n .

Quantum Group Examples

- Replace G_n in the previous slide by separable compact quantum groups.
- Pol(G) is nuclear since G is separable, so $\otimes_{\varepsilon} = \otimes_{\pi} = \otimes_{\iota}$ for Pol(G).
- When the CQG G is separable, the strong dual Pol(G)' is a π -Hopf algebra of class ($\mathcal{F}\mathcal{N}$).
- The subgroup condition becomes $p_n : Pol(G_{n+1}) \to Pol(G_n)$ being a surjective π -Hopf algebra morphism.
- When $G_n = S_n^+$, then H_∞ should be the function algebra of S_∞^+ .
- When $G_n = O_n^+$, then H_{∞} should be the function algebra of O_{∞}^+ .
- When $G_n = U_n^+$, then H_∞ should be the function algebra of U_∞^+ .
- These topological quantum groups, defined as locally convex Hopf algebras, seem not to be locally compact, but nevertheless still admit a reasonable strong dual.

Structures of Locally Compact Groups

We now heavily uses the work related to the solution of Hilbert's fifth problem (Gleason, Montgomery & Zippin, Yamabe etc.). Let G be any locally compact group with G/G_0 compact.

- Call a compact normal subgroup K **good**, if G/K is a Lie group.
- Let $\mathfrak{L}(G)$ denote the collection of good subgroups of G. Then $K_1, K_2 \in \mathcal{L}(G) \implies K_1 \cap K_2 \in \mathcal{L}(G)$, and $\bigcap_{K \in \mathcal{L}(G)} K = \{e\}$.
- Call $f \in C(G)$ **liftably smooth**, if there exists $K \in \mathcal{L}(G)$, such that there exists $f_K \in C^{\infty}(G/K)$, such that $f = f_K \circ p_K$, where $p_K : G \to G/K$ is the canonical projection.
- The space $\mathscr{E}_l(G)$ of all liftably smooth functions is the union of the images of $p_K^*: C^\infty(G/K) \to \mathscr{E}_l(G)$.
- A good subgroup inclusion $K_1 \subseteq K_2$ induces a surjective Lie group morphism $G/K_1 \to G/K_2$, hence an embedding $C^{\infty}(G/K_2) \hookrightarrow C^{\infty}(G/K_1)$, and $\mathscr{E}_l(G)$ can be seen as the inductive limit of these $C^{\infty}(G/K)$, $K \in \mathfrak{L}(G)$.

A Variant of Bruhat's Regular Functions

Theorem (W, 24)

Assume G is a second countable LCG with compact G/G_0 . Then

- **1** As a locally convex space, $\mathcal{E}_l(G)$ is complete.
- **②** The group operations induce an ι -Hopf algebra structure on $\mathscr{E}_l(G)$ that is (ι, π) -reflexive.
- **1** The embedding $\mathcal{E}_l(G) \hookrightarrow C(G)$ satisfies the hypothesis of our generalized version of Gelfand duality.
- The map $G \to \chi_c(\mathcal{E}_l(G))$, $g \mapsto \delta_g$ is an isomorphism of topological groups.

By now, our theory can be seen as an alternative approach to the Kac program, and includes many more non-locally compact examples, both classical and quantum, and is able to describe finer Lie group related structures as well.

Thank you

Thank you!